skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hanrahan, Brendan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. HfO 2 -based antiferroelectric-like thin films are increasingly being considered for commercial devices. However, even with initial promise, the temperature sensitivity of electrical properties such as loss tangent and leakage current remains unreported. 50 nm thick, 4 at. % Al-doped HfO 2 thin films were synthesized via atomic layer deposition with both top and bottom electrodes being TiN or Pt. A study of their capacitance vs temperature showed that the Pt/Al:HfO 2 /Pt had a relative dielectric permittivity of 23.30 ± 0.06 at room temperature with a temperature coefficient of capacitance (TCC) of 78 ± 86 ppm/°C, while the TiN/Al:HfO 2 /TiN had a relative dielectric permittivity of 32.28 ± 0.14 at room temperature with a TCC of 322 ± 41 ppm/°C. The capacitance of both devices varied less than 6% over 1 to 1000 kHz from −125 to 125 °C. Both capacitors maintained loss tangents under 0.03 and leakage current densities of 10 −9 –10 −7 A/cm 2 between −125 and 125 °C. The TiN/Al:HfO 2 /TiN capacitor maintained an energy storage density (ESD) of 18.17 ± 0.79 J/cm 3 at an efficiency of 51.79% ± 2.75% over the −125 to 125 °C range. The Pt/Al:HfO 2 /Pt capacitor also maintained a stable ESD of 9.83 ± 0.26 J/cm 3 with an efficiency of 62.87% ± 3.00% over the same temperature range. Such low losses in both capacitors along with their thermal stability make antiferroelectric-like, Al-doped HfO 2 thin films a promising material for temperature-stable microelectronics. 
    more » « less
  2. Abstract The pursuit of smaller, energy‐efficient devices drives the exploration of electromechanically active thin films (<1 µm) to enable micro‐ and nano‐electromechanical systems. While the electromechanical response of such films is limited by substrate‐induced mechanical clamping, large electromechanical responses in antiferroelectric and multilayer thin‐film heterostructures have garnered interest. Here, multilayer thin‐film heterostructures based on antiferroelectric PbHfO3and ferroelectric PbHf1‐xTixO3overcome substrate clamping to produce electromechanical strains >4.5%. By varying the chemistry of the PbHf1‐xTixO3layer (x = 0.3‐0.6) it is possible to alter the threshold field for the antiferroelectric‐to‐ferroelectric phase transition, reducing the field required to induce the onset of large electromechanical response. Furthermore, varying the interface density (from 0.008 to 3.1 nm−1) enhances the electrical‐breakdown field by >450%. Attaining the electromechanical strains does not necessitate creating a new material with unprecedented piezoelectric coefficients, but developing heterostructures capable of withstanding large fields, thus addressing traditional limitations of thin‐film piezoelectrics. 
    more » « less
  3. null (Ed.)
  4. Abstract Highly responsive, voltage‐tunable dielectrics are essential for microwave‐telecommunication electronics. Ferroelectric/relaxor materials have been leading candidates for such functionality and have exhibited agile dielectric responses. Here, it is demonstrated that relaxor materials developed from antiferroelectrics can achieve both ultrahigh dielectric response and tunability. The system, based on alloying the archetypal antiferroelectric PbZrO3with the dielectric BaZrO3, exhibits a more complex phase evolution than that in traditional relaxors and is characterized by an unconventional multi‐phase competition between antiferroelectric, ferroelectric, and paraelectric order. This interplay of phases can greatly enhance the local heterogeneities and results in relaxor characteristics while preserving considerable polarizability. Upon studying Pb1‐xBaxZrO3forx= 0‐0.45, Pb0.65Ba0.35ZrO3is found to provide for exceptional dielectric tunability under low bias fields (≈81% at 200 kV cm−1and ≈91% at 500 kV cm−1) at 10 kHz, outcompeting most traditional relaxor ferroelectric films. This high tunability is sustained in the radio‐frequency range, resulting in a high commutation quality factor (>2000 at 1 GHz). This work highlights the phase evolution from antiferroelectrics (with lower, “positive” dielectric tunability) to relaxors (with higher, “negative” tunability), underscoring a promising approach to develop relaxors with enhanced functional capabilities and new possibilities. 
    more » « less
  5. Abstract Harvesting waste heat for useful purposes is an essential component of improving the efficiency of primary energy utilization. Today, approaches such as pyroelectric energy conversion are receiving renewed interest for their ability to turn wasted energy back into useful energy. From this perspective, the need for these approaches, the basic mechanisms and processes underlying their operation, and the material and device requirements behind pyroelectric energy conversion are reviewed, and the potential for advances in this area is also discussed. 
    more » « less
  6. Abstract The hafnate perovskites PbHfO3(antiferroelectric) and SrHfO3(“potential” ferroelectric) are studied as epitaxial thin films on SrTiO3(001) substrates with the added opportunity of observing a morphotropic phase boundary (MPB) in the Pb1−xSrxHfO3system. The resulting (240)‐oriented PbHfO3(Pba2) films exhibited antiferroelectric switching with a saturation polarization ≈53 µC cm−2at 1.6 MV cm−1, weak‐field dielectric constant ≈186 at 298 K, and an antiferroelectric‐to‐paraelectric phase transition at ≈518 K. (002)‐oriented SrHfO3films exhibited neither ferroelectric behavior nor evidence of a polarP4mmphase . Instead, the SrHfO3films exhibited a weak‐field dielectric constant ≈25 at 298 K and no signs of a structural transition to a polar phase as a function of temperature (77–623 K) and electric field (–3 to 3 MV cm−1). While the lack of ferroelectric order in SrHfO3removes the potential for MPB, structural and property evolution of the Pb1−xSrxHfO3(0 ≤x < 1) system is explored. Strontium alloying increased the electric‐breakdown strength (EB) and decreased hysteresis loss, thus enhancing the capacitive energy storage density (Ur) and efficiency (η). The composition, Pb0.5Sr0.5HfO3produced the best combination ofEB = 5.12 ± 0.5 MV cm−1,Ur = 77 ± 5 J cm−3, and η = 97 ± 2%, well out‐performing PbHfO3and other antiferroelectric oxides. 
    more » « less